

Journal of Academic Research and Trends in Educational Sciences

Journal home page: http://ijournal.uz/index.php/jartes

LEACHING OF NUTRIENTS DEPENDING ON THE ARTIFICIAL SCREEN CREATED IN THE LABORATORY

- S. Zakirova¹
- D. Akhmedova²
- M. Madalova³
- M. Abdujalilova⁴

Fergana State University

KEYWORDS

dynamics, nitrogen, process, ammonia nitrogen

ABSTRACT

Based on the results of studies conducted on light loamy soil. In sandy soil, nitrogen movement occurs 50% faster than in light clay, with the same amount of moisture penetrating into the soil.

2181-2675/© 2022 in XALQARO TADQIQOT LLC.

DOI: 10.5281/zenodo.7242029

This is an open access article under the Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/deed.ru)

¹ Doctor of Agricultural Sciences, Prof., Fergana State University, UZB

² Docent, Fergana State University, UZB

³ Teacher, Fergana State University, UZB

⁴ Master, Fergana State University, UZB

ВЫМЫВ ПИТАТЕЛЬНЫХ ЭЛЕМЕНТОВ В ЗАВИСИМОСТИ ОТ СОЗДАННОГО В ЛАБОРАТОРНЫХ УСЛОВИЯХ ИСКУССТВЕННОГО ЭКРАНА

КЛЮЧЕВЫЕ СЛОВА:

РИПИТОННЯ

динамика, азот, процесс, аммиачный азот На основании результатов исследований, проведенных на легкосуглинистой почве. В песчаной почве перемещение азота происходит на 50% быстрее, чем в легкой глине, при том же самом количестве проникшей в почву влаги.

Известно, что в результате поливов изменяется влажность почвы, интенсивнее становится движение грунтовых вод, изменяется передвижение солей в почве. А.Н.Розанов, М.А.Белоусов отмечают, что при поливах в верхних слоях уменьшается содержание основных элементов питания – углерода, азота, фосфора, калия, а также микроэлементов. Е. Högborg [142; с. 97] считает, что с почвенной влагой, передвигающейся в нижние слои, перемещается и легкорастворимый азот в виде нитрата (NO₃). При этом, пишет автор, передвижение азота происходит быстрее в песчаной почве, нежели в глинистой. В песчаной почве перемещение азота происходит на 50% быстрее, чем в легкой глине, при том же самом количестве проникшей в почву влаги. Им установлено, что максимальная концентрация азота в случае сосредоточения его в верхнем слое и проникновении в почву 100 мм осадков наблюдается на глубине 40 см. Очень незначительная часть внесенного азота останется в пахотном слое, остальная часть переместится на глубину 70 см.

Потери воды и элементов питания растениями зависят от режима увлажнения почв. Избыточное увлажнение (на уровне ППВ) приводит к нерациональному использованию поливной воды и большему вымыванию элементов питания. Влияние интенсивного применения удобрений на миграцию соединений азота в почве было изучено BadowskaK., Szperlinski.По их мнению, миграция азота зависит от норм удобрений и количества осадков и возрастает на почвах более легкого механического состава. На основании результатов исследований, проведенных на легкосуглинистой почве, YimprasertSuda, BlevinsR.D.утверждают, что N- NO₃ быстро вымывается из слоя 0-15 см и незначительно аккумулируется в слое 15-30 см. Рез ультаты наших лабораторных опытов на песках свидетельствуют о том, что наибольшее количество нитратного азота было вынесено в первый полив. В варианте без экрана этот показатель варьировал в пределах 2,27-2,36 г/л. Наименьший вынос отмечен в варианте с созданием экрана на глубине 70 см (табл. 1) – 0,91 г/л. В варианте с запашкой мелкозема на 40 см вынос азота был выше, чем в варианте с запашкой на 70 см, но значительно меньше, чем в контроле. Следует отметить, что содержание нитратного азота в поливной воде после II и III поливов

было незначительным. В контроле оно составило в среднем 0,036 г/л, при создании экрана на глубине 70 см уменьшилось до 0,015 г/л. Отсюда видно, что на контроле происходит вымыв питательных элементов.

Таблица 1. Количество нитратного азота, вымытого после полива, г/л

Вариант опыта	Вымыто в 1-й полив	Вымыто во 2-й полив	Вымыто в 3-й полив	Всего вымыто
Контроль (16 см)	2,20	0,040	0,036	2,27
Контроль (25-30 см)	2,29	0,040	0,036	2,36
Искусственный экран на глубине 40 см (16 см)	1,26	0,032	0,029	1,32
Искусственный экран на глубине 40 см (25-30 см)	1,43	0,023	0,027	1,48
Искусственный экран на глубине 70 см (16 см)	0,93	0,017	0,017	0,96
Искусственный экран на глубине 70 см (25-30 см)	0,89	0,012	0,015	0,91

Примечание. Здесь и далее в скобках указана глубина внесения удобрений.

Аналогичная закономерность наблюдается при выносе аммиачного азота с поливной водой, но показатель значительно меньше. Он колеблется в пределах 0,673-0,143 г/л (табл. 2).

Таблица 2. Количество аммиачного азота, вымытого после поливов, г/л

	Вымыто	Вымыто	Вымыто	
Вариант опыта	В	во	В	Всего
Бариант опыта	1-й	2-й	3-й	вымыто
	полив	полив	полив	
Контроль (16 см)	0,504	0,140	0,029	0,673
Контроль (25-30 см)	0,460	0,140	0,026	0,626
Искусственный экран на	0,138	0,110	0,018	0,266
глубине 40 см (16 см)	0,130	0,110	0,016	0,200
Искусственный экран на	0,178	0,101	0,015	0,294
глубине 40 см (25-30 см)	0,170	0,101	0,013	0,2 74
Искусственный экран на	0.002	0.061	0.012	0.157
глубине 70 см (16 см)	0,083	0,061	0,013	0,157

Искусственный экран на глубине 70 см (25-30 см)	0,076	0,058	0,011	0,143	
---	-------	-------	-------	-------	--

Содержание подвижного фосфора было мизерным. Наибольший вынос подвижного фосфора отмечен в контроле – 0,0008 г/л, наименьший – в варианте с запашкой мелкозема на 70 см – 0,00028 г/л (табл. 5.1.3). Это свидетельствует о способности фосфора переходить в более сложные соединения в почве.

Таблица 3 Количество подвижного фосфора, вымытого после поливов, г/л

	Вымыто	Вымыто	Вымыто	
Вариант опыта	в 1-й полив	во 2-й полив	в 3-й полив	Всего вымыто
Контроль (16 см)	0,0006	0,0002	Следы	0,0008
Контроль (25-30 см)	0,0005	0,0002	Следы	0,0007
Искусственный экран на глубине 40 см (16 см)	0,0003	0,0001	Следы	0,0004
Искусственный экран на глубине 40 см (25-30 см)	0,0005	0,0001	Следы	0,0006
Искусственный экран на глубине 70 см (16 см)	0,0002	0,0001	Следы	0,0003
Искусственный экран на глубине 70 см (25-30 см)	0,0002	0,00008	Следы	0,00028

Содержание калия в поливных водах варьировало в пределах 0,988-0,789 г/л (табл. 4).

Необходимо отметить, что вынос питательных элементов возрастал с увеличением вытекшей воды.

Таблица 4. Количество калия, вымытого после поливов, г/л

Вариант опыта	Вымыто в	Вымыто	Вымыто	Всего
	1-й полив	во	В	вымыто
		2-й полив	3-й	
			полив	
Контроль (16 см)	0,90	0,054	0,034	0,988
Контроль (25-30 см)	0,90	0,054	0,033	0,987
Искусственный экран на	0,80	0,059	0,031	0,890
глубине 40 см (16 см)				
Искусственный экран на	0,80	0,059	0,028	0,887
глубине 40 см (25-30 см)				

Journal of Academic Research and Trends in Educational Sciences (JARTES) VOLUME 1, ISSUE 10 / ISSN 2181-2675

Искусственный экран на	0,70	0,061	0,028	0,789
глубине 70 см (16 см)				
Искусственный экран на	0,70	0,062	0,027	0,789
глубине 70 см (25-30 см)				

Таблица 5 Содержание питательных элементов в песке (лабороторный опыт)

	G V	Нитратный	Аммиачный	Калий
Вариант опыта	Слой, см	азот, мг/100	азот, мг/100	мг/100 г
	0-20	0,45	133,0	60
I/a (1.6	20-40	0,36	111,5	60
Контроль (16	40-60	0,28	104,0	60
см)	60-80	0,26	84,7	60
	80-100	0,36	77,8	100
	0-20	0,54	136,3	60
V оттиро ит	20-40	0,45	145,5	60
Контроль (25-30 см)	40-60	0,32	149,5	60
(25-30 CM)	60-80	0,31	125,5	60
	80-100	0,34	116,0	100
	0-15	0,56	133,0	80
Запашка на 40	15-30	0,42	142,0	100
см (16 см)	30-40	1,0	169,5	80
	40-60	0,63	134,5	100
	60-100	0,53	121,0	100
	0-15	0,53	124,0	80
Запашка на 40	15-30	0,45	157,5	120
см (25-30 см)	30-40	1,0	165,5	80
CM (25-30 CM)	40-60	0,48	133,0	100
	60-100	0,42	116,0	100
Запашка на 70	0-20	0,56	99,3	80
	20-40	0,48	124,0	80
см (16 см)	40-60	0,80	134,5	100
CM (10 CM)	60-70	1,13	164,0	140
	70-100	0,50	130,0	140

ИСПОЛЬЗОВАННЫЕ ЛИТЕРАТУРЫ

1. Закирова С., Юлдашев Г. Влияние экрана на свойства почв и растения. Монография. – Ташкент: Фан, 2008. – 5-130 с.

- 2. Закирова С., Объёмная масса иследуемых бугристо-барханистых песков. Уз к.х. №4 2000. З4 с.
- 3. Закирова С., Исақов В. Фарғона водийси қумликлари ва уларнинг мелиоратив муаммолари ҳақида. Пахтачилик ва дончилик журнали. Т., 2000. №3/4.
- 4. Закирова С., Юлдашев А., Назаров М. Марказий Фарғона қумликларида азотли ўғитлар самарадорлигини ошириш. Пахтачилик ва дончилик журнали. Т., 2000. №3/4.
- 5. Юлдашев Ғ., Закирова С., Исағалиев М. Орошаемый земельный фонд Ферганской долины. Ўз. қ/х. 2008. № 8.
- 6. Юлдашев Г., Зокирова С. Свойства и некоторые особенности песков в Фергане.// Ўзбекистон қ/х. Т.: №11. 2014 й.
- 7. Хамрақулов, И. Б. (2021). Кичик саноат зоналарини барпо этиш ва ривожлантиришнинг назарий асослари. *Scientific progress*, *2*(7), 586-592.
- 8. Хамрақулов, И. Б. (2022). Кичик саноат зоналарини ривожлантиришнинг моҳияти ва ўзига хос ҳусусиятлари. *Scientific progress*, *3*(1), 328-334.
- 9. Хамракулов, И. Б. (2021). Теоретические основы создания и развития малых промышленных зон. *ма*, *2*, 49.
- 10. Хамрақулов, И. Б. (2022). КИЧИК САНОАТ ЗОНАЛАРИ ИНВЕСТИЦИОН ФАОЛЛИГИНИ ОШИРИШНИНГ СТРАТЕГИК ИМКОНИЯТЛАРИ. Central Asian Research Journal for Interdisciplinary Studies (CARJIS), 2(Special Issue 2), 140-146.
- 11. Хонкелдиева, К., Рахимова, Х., & Абдусатторова, З. (2020). Проблемы развития социального обеспечения населения. In *Наука сегодня: фундаментальные и прикладные исследования* (pp. 42-43).
- 12. Хонкелдиева, К., & Муйдинжонова, М. (2020). Актуальные проблемы решения безработицы в Республике Узбекистан. In *Наука сегодня: фундаментальные и прикладные исследования* (pp. 18-19).
- 13. Хонкелдиева, К., & Мўйдинжонова, М. (2020). Необходимые условия обеспечения гендерного равенства. Іп Наука сегодня: фундаментальные и прикладные исследования (pp. 40-41).
- 14. Хонкелдиева, К., & Хўжамбердиев, Ж. (2020). Проблемы развития организации: управленческий и логистический аспекты. In *Наука сегодня: история и современность* (pp. 17-19).
- 15. Zokirova, S. X., Ahmedova, D., Akbarov, R. F., & Xonkeldiyeva, K. R. (2021). Light Industry Enterprises In Marketing Activities Experience Of Foreign Countries In The Use Of Cluster Theory. *The American Journal of Management and Economics. Innovations*, *3*, 01-36.
- 16. Хайдаров, Х., Нурматова, И., & Хонкелдиева, К. (2021). Факторы формирования сильного конкурентного рынка в текстильной промышленности. In *НАУКА СЕГОДНЯ: ВЫЗОВЫ И РЕШЕНИЯ* (pp. 59-61).
- 17. Хамракулов, И. Б. (2021). Теоретические основы создания и развития малых промышленных зон. *ма*, *2*, 49.

- 18. Хонкелдиева, К., Рахимова, Х., & Хасанхужаева, У. (2021). Предупреждение преступности среди несовершеннолетних. *Наука сегодня: факты, тенденции, прогнозы [Текст]: мате*, 34.
 - 19. Xonkeldiyeva, К., & Xo'jamberdiyev, J. (2020). Экономика и социум.
- 20. Asqarova, A. M., Xonkeldiyeva, K. R., Nomonjonova, F. U., Qodirova, S. Q., & Arabxonova, X. A. (2021). Classification Of Competition In The Market Of Light Industrial Goods And The Factors That Shape It. *The American Journal of Management and Economics Innovations*, *3*, 01-43.
- 21. Xonkeldiyeva, K. R. (2021). Features of management of textile industry enterprises based on the cluster approach. *ACADEMICIA: An International Multidisciplinary Research Journal*, 11(9), 780-783.
- 22. Asqarova, A. M., Xonkeldiyeva, K. R., Abdukarimova, R. A., Xudoyberdiyeva, X. B., & Egamberdiyeva, N. B. (2021). Theories Of Marketing Strategies To Increase The Competitiveness Of Light Industry Enterprises. *The American Journal of Management and Economics Innovations*, *3*(01), 40-42.
- 23. Asqarova, A., Xonkeldiyeva, K., Abdumutalibova, X., & Murotova, D. (2021). Issues of increasing the competitiveness of light industry enterprises. *Наука сегодня: проблемы и пути решения [Текст]: материа*, 48.
- 24. Zokirova, S. X., Akbarov, R. F., Isagaliyeva, S. M., & Xonkeldiyeva, K. R. (2021). Sand Distribution In Central Fergana. *The American Journal of Interdisciplinary Innovations Research*, *3*(01), 113-117.